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Fine particulate matter (PM2.5) air pollution exposure is the largest
environmental health risk factor in the United States. Here, we link
PM2.5 exposure to the human activities responsible for PM2.5 pollu-
tion. We use these results to explore “pollution inequity”: the differ-
ence between the environmental health damage caused by a racial–
ethnic group and the damage that group experiences. We show that,
in the United States, PM2.5 exposure is disproportionately caused by
consumption of goods and services mainly by the non-Hispanic white
majority, but disproportionately inhaled by black and Hispanic mi-
norities. On average, non-Hispanic whites experience a “pollution
advantage”: They experience ∼17% less air pollution exposure than
is caused by their consumption. Blacks and Hispanics on average bear
a “pollution burden” of 56% and 63% excess exposure, respectively,
relative to the exposure caused by their consumption. The total dis-
parity is caused as much by how much people consume as by how
much pollution they breathe. Differences in the types of goods and
services consumed by each group are less important. PM2.5 exposures
declined ∼50% during 2002–2015 for all three racial–ethnic groups,
but pollution inequity has remained high.

air quality | environmental justice | fine particulate matter | input–
output | life cycle assessment

Fine particulate matter (PM2.5) exposure is a major health risk
factor in the United States, responsible for 63% of deaths

from environmental causes and 3% of deaths from all causes (1). It
is a risk factor that is inequitably distributed among demographic
groups, including racial–ethnic groups, owing in part to differences
in pollution concentrations at locations of residence (2, 3). The
extent to which differences in consumption of goods and services
by racial–ethnic groups contribute to observed disparities in ex-
posure is unknown, as is whether racial–ethnic groups have
benefited equitably from recent improvements in PM2.5 air quality.
Here, we explore racial–ethnic disparities in the causation and

effect of exposure to PM2.5 in the United States. We do this by
investigating links among pollution, the parties responsible for its
emission, and the health impacts that result. First, we estimate
mortality from PM2.5 for all emission sources in the United States.
Next, we attribute these emissions to the end-use activities and to
the end-user parties ultimately responsible for their generation.
Finally, we compare results among racial–ethnic groups to explore
what we term “pollution inequity”: the extent to which groups
disproportionately contribute to or bear the burden of pollution.
We estimate mortality impacts in the United States from

PM2.5 exposure using spatially explicit emissions data from all
pollutant emission sources (4), the Intervention Model for Air
Pollution (InMAP) air quality model (5), and spatially explicit pop-
ulation and health data (ref. 6; see Materials and Methods). We
consider emissions of primary PM2.5 and of secondary PM2.5
precursors, both of which contribute to increased atmospheric
PM2.5 concentrations. Our approach yields estimates of premature
deaths caused by PM2.5 exposure in the United States for
each year during 2003–2015, disaggregated by 5,435 emissions

source types, at a spatial resolution varying between 1 and 48 km
depending on population density. We aggregate impacts into 15
emitter groups. (SeeMaterials and Methods; SI Appendix, Tables S1–
S14 show the largest emitter types in the 14 anthropogenic and
domestic emitter groups.)
We estimate a population-weighted average ambient PM2.5

exposure concentration of 7.7 μg·m−3 for the United States in
2015, causing 131,000 premature deaths (Fig. 1 and SI Appendix,
Fig. S1; see SI Appendix). Of these, 102,000 are caused by US
anthropogenic emissions and 29,000 by other sources, largely
wildfires and natural biogenic emissions (26,000), with minor
contributions from Canadian and Mexican emissions (3,000). The
total number of deaths reported here is higher than a commonly
cited estimate of 93,000 (1), but at the low end of the range of a
recently published estimate of 121,000–213,000 deaths (7), which
uses a concentration–response relationship similar to the one
employed here (6). (SI Appendix, Table S15 reports estimates of
PM2.5 mortalities using several concentration–response functions.)
Responsibility for air pollution is typically assigned to its emitters

(8) (e.g., a factory), but it can also be ascribed to end uses (e.g., the
purchase and use of manufactured goods) by end users (e.g., indi-
vidual consumers) that ultimately result in its release (Fig. 1). Here,
we connect PM2.5 air pollution and its health impacts to end uses
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and end users by coupling economic input–output relationships to
pollution emission sources (https://www.bea.gov/industry/io_annual.
htm). Our approach allows us to attribute responsibility to (i)
emitter entities that physically emit air pollutants; (ii) end uses that
lead to air pollution emissions, often through intermediate eco-
nomic transactions; and (iii) end users. We track 19 end-user types,
which we aggregate here into four groups (personal consumption by
each of three racial–ethnic groups, as well as government con-
sumption), and 389 end-use categories, which we aggregate here
into seven groups (electricity, food, goods, information and enter-
tainment, services, shelter, and transportation).
Of 102,000 premature deaths from domestic anthropogenic

emissions, we estimate 11,000 (11%) are caused by demand for
goods that are exported (Fig. 1). Of the remaining 91,000 pre-
mature deaths caused by end uses within the United States,
83,000 (91%) are attributed to personal consumption (i.e., indi-
vidual consumers); the remaining 8,000 (9%) are caused by pol-
lution related to governmental expenditures.
To determine racial–ethnic inequity, we disaggregate personal

consumption and exposure to PM2.5 by race–ethnicity. Here,
“exposure” is the population-weighted average ambient concentra-
tion at places of residence. We focus on the subset of impacts (83,000
premature deaths) that we can attribute to consumption by individ-
uals in the United States, excluding the 48,000 premature deaths
caused by governmental end uses, exports, and nonanthropogenic
sources. (Racial–ethnic disparities in overall exposure to PM2.5 from

all sources are shown in SI Appendix, Fig. S2.) We consider
persons self-identifying as black or African-American (hereafter,
“black”; 12% of the population), Hispanic or Latino (“Hispanic”;
17% of the population), and the remainder [non-Hispanic white
(62% of the population) plus all other race–ethnicity groups (8%
of the population); hereafter, “white/other” (70% of the population)].
We define and quantify pollution inequity for a group g ðIgÞ as the

fractional difference between a racial–ethnic group’s exposure to
PM2.5 caused by all groups ðEgÞ and that group’s population-adjusted
contribution to the overall PM2.5 exposure of all groups ðCgÞ (Eq. 1):�

Ig =
Eg

Cg
–1
�
. [1]

Positive values for pollution inequity indicate that a group expe-
riences more exposure than it causes (on average and after adjusting
for population sizes); negative values indicate the opposite.
We find that blacks are exposed to 6.0 μg·m−3 of PM2.5 (Eg),

which is 21% greater than the overall population average expo-
sure of 5.0 μg·m−3, while their population-adjusted consumption
causes PM2.5 exposure of 3.8 μg·m−3 to the overall population (Cg),
which is 23% less exposure than average (Fig. 2). We there-
fore estimate for blacks a pollution inequity of 56% (Fig. 3A;
6.0 μg·m−3=3.8 μg·m−3 − 1= ð1+ 0.21Þ=ð1− 0.23Þ− 1= 56%). His-
panics are exposed to 12% more PM2.5 than average (5.5 μg·m−3),
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Fig. 1. Sources of US mortality from PM2.5. PM2.5 concentrations resulting from emissions from each emitter group [maps on Left; color scale contains a
discontinuity at the 99th percentile of concentrations (i.e., 3.1 μg·m−3)] and relationships among PM2.5 health impacts as attributed to emitters (Left bar), end
uses (Middle bar), and end users (Right bar). The height of the bar on the Left shows the number of PM2.5-attributable premature deaths caused by the
physical production of emissions from each group of emitters, the height of the Middle bar shows the number of deaths caused by demand for each group of
end uses, and the height of the bar on the Right shows the number of deaths caused by different types of end users. The blue connecting lines show re-
lationships among emitters, end uses, and end users; connecting lines representing <1,000 deaths are not shown. (Detailed relationships between end uses
and emitters for each racial–ethnic end-user group are shown in Fig. 2; time trends are shown in SI Appendix, Fig. S4.)
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but cause 31% less exposure than average (3.4 μg·m−3), for a
pollution inequity of 63%. Whites/others are exposed to 7% less
PM2.5 than average (4.6 μg·m−3), but cause 12% more exposure than
average (5.5 μg·m−3), for a pollution inequity of −17%.
Blacks are more exposed than whites/others to pollution from

every emitter group (Fig. 2). The same holds for Hispanics, with the
exceptions of PM2.5 originating from agriculture, from coal electric
utilities, and from residential wood combustion, for which they are
exposed to 11%, 40%, and 14% less, respectively, than whites/
others. Those three types of emissions are concentrated in regions
of the United States with relatively low Hispanic populations (Fig.
1). Whites/others consume more—and cause more exposure—than
do blacks and Hispanics across all seven end-use categories; the
end uses representing the greatest differences in consumption-
caused exposure are food (for which whites/others cause 61%
and 49% more exposure than blacks and Hispanics, respectively),
transportation (74% and 93%), and services (118% and 114%).
Differences in consumption across groups are comparable or

larger contributors to pollution inequity than are differences in
exposure across groups. Consumption differences account for
52%, 73%, and 63% of overall pollution inequity for blacks,
Hispanics, and whites/others, respectively (Fig. 3A). Previous
analyses have found that when considering only differences in
locations of residence, exposure disparities by race are much
larger than disparities by income (9, 10). Our results suggest that
income, to the extent that it correlates with consumption, is an
important factor in determining how much pollution a person
causes, even if it may be statistically less important as a deter-
minant of exposure. We also find that differences in racial–ethnic
groups’ contribution to exposure are driven more by differences
in their overall amount of consumption (magnitude effect) than
by differences in the types of goods and services they consume
(composition effect) (Fig. 4 and SI Appendix, Fig. S3).
Exposure to PM2.5 caused by personal consumption by all

three racial–ethnic groups decreased by an average of 51%
during 2003–2015 (Fig. 3B, SI Appendix, Fig. S4, and Movie S1),
even as personal consumption expenditures increased (SI Ap-
pendix, Fig. S4 and Tables S16–S18). Furthermore, absolute dif-
ferences in exposure caused by overall consumption decreased
among groups, as did absolute differences in overall exposure
caused by each group’s consumption (Fig. 3B). Pollution inequity
has remained high, however, decreasing by 23% for blacks (from
73% in 2003 to 56% in 2015) but increasing by 5% for Hispanics
(from 60% in 2003 to 63% in 2015; Fig. 3C). Increases in

consumption during 2003–2015 were larger for blacks than His-
panics for most sectors of the economy; two notable examples are
spending on shelter (17% and 2% increases, respectively) and
goods (21% and 6%, respectively) (SI Appendix, Tables S16–S18).
Decreases in absolute exposure differences were primarily caused
by decreases in the PM2.5 concentrations where blacks and His-
panics live, rather than by blacks and Hispanics moving to loca-
tions with lower PM2.5 concentrations (SI Appendix, Fig. S2).
Here, we have described linkages between human end-use activi-

ties and air pollution—and the racial–ethnic disparities therein. We
find that, in the United States, PM2.5 air pollution is disproportion-
ately induced by the racial–ethnic majority and disproportionately
inhaled by racial–ethnic minorities. All have benefited from recent
reductions in atmospheric PM2.5 concentrations. Our analysis shows
for the first time how pollution inequity is driven by differences
among racial–ethnic groups in both exposure and the consumption
that leads to emissions. Still, questions remain about the spatial
context of pollution inequity, its underlying causes, how best to ad-
dress it, and its generalizability. For example, little is known about the
“spatial scale” of inequity, such as whether consumers tend to live
near to or far from the people exposed to the pollution resulting from
their consumption. Further information on this issue would clarify
whether this inequity could best be investigated and addressed at the
city, state, or national level. Another open question is whether the
patterns of pollution inequity described here are observed for other
pollutants, times, or locations (e.g., in other countries). The pollution
inequity metric defined here could be used to explore such questions
and to inform discussion of inequity in other environmental burdens,
including climate change, for which inequities can occur across
continents and generations, in addition to across race–ethnicities.

Materials and Methods
Environmentally extended economic input–output analysis has been used to
track air pollutant and greenhouse gas emissions induced by economic de-
mand within and among national economies (11–16). Fewer studies have
reported air quality-related health impacts induced by domestic (17, 18) and
international trade (19–21). Here, we explore relationships among human
end-use activities in the United States, PM2.5-related health impacts caused
by those activities, the corresponding consumption–exposure inequity
among race–ethnicity groups, and related temporal trends.

Unlike analyses of greenhouse gas emissions for use in climate-change
impact assessment, analyses of health impacts from non-greenhouse gas air
pollution strongly benefit from spatial differentiation. For example, within the
United States, health impacts per unit of emissions of PM2.5 and its precursors
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vary greatly across emission locations (22, 23). Spatial resolution is especially
important when quantifying disparities in exposure among demographic
groups (9). Therefore, to create a spatially explicit environmentally extended
economic input–output model for the United States, we couple economic
input–output (https://www.bea.gov/industry/io_annual.htm) and consumption
(https://www.bls.gov/cex/) data with spatially explicit emissions data (4), the
InMAP air quality model (5), and spatially explicit population and health data
(ref. 6; https://www.census.gov/programs-surveys/acs/technical-documentation/
table-and-geography-changes/2015/5-year.html; https://www.cdc.gov/nchs/
data_access/cmf.htm). The resulting model relates air pollution emissions,
concentrations, and health impacts with economic activity in the United
States at a spatial scale varying between 1 and 48 km, depending on
population density and emissions density. We refer to the model as the
Extended InMAP Economic Input–Output (EIEIO) model, which is freely
available at the Zenodo repository (24). InMAP is able to spatially resolve both
the entire contiguous United States and within-city concentration gradients,
which is critical for quantifying within- and among-city differences in exposure.

EIEIO uses economic data to trace human end-use activities that directly and
indirectly cause air pollutant emissions and the resultinghumanexposure toPM2.5.
The model tracks relationships between final “end users,” the activities or “end
uses” they are participating in (or “final demand for commodities,” in economic
input–output terminology) that induce air pollution emissions, and the “emitter”
entities that are physically releasing air pollutant emissions. EIEIO also tracks
“intermediate uses.” Intermediate uses are purchases by businesses to produce
something that they are selling, whereas end uses are purchases or activities for
reasons other than producing something to be directly sold. For example, the
purchase of electricity to heat a home is an end use, whereas the purchase of
electricity to manufacture fertilizer is an intermediate use. Our analysis includes
both the emissions caused by an end use itself (e.g., tailpipe emissions from
driving a car) and the emissions from economic activities in support of the end
use (e.g., emissions from the production of gasoline to fuel the car).

EIEIO tracks 19 end-user types, 389 end-use categories, and 5,434 categories
of emitters. For ease of display and communication, we present results here in
groups of four users, seven uses, and 14 emitters; further details are in SI Ap-
pendix. Mappings from the use and emitter categories to corresponding groups
are in Tessum et al. (24). Unless otherwise noted, all results are for year 2015.

Methods are described belowand in Tessumet al. (24). Themodel source code
includes a graphical interface that can be used for exploratory analysis and vi-
sualization. Results here were generated using a 2018-vintage Google Compute
Engine instance with 32 CPU cores, 208 GB of RAM, and a 500-GB hard drive.

Economic Production. To relate final economic demand for commodities to
economic activity or production in individual industries, we use the following
US Bureau of Economic Analysis (BEA) Input–Output Accounts Data (https://
www.bea.gov/industry/io_annual.htm):

i) Final demand ðdf Þ: Economic activity that leads to the final consumption
of a good or service and that is not induced by economic activity in
another sector of the economy. This can include demand for exports.

ii) Import final demand ðdfiÞ: Economic activity that leads to the final con-
sumption of an imported good or service and that is not induced by
economic activity in another sector of the economy.

iii) Total requirements ðRtÞ: Direct plus indirect purchases from an industry
required to produce a dollar of output of a commodity (25).

iv) Total domestic requirements ðRt,dÞ: Domestic (i.e., within the United
States) direct plus indirect purchases from an industry required to pro-
duce a dollar of output of a commodity.

v) Total import requirements ðRt,iÞ: Calculated as Rt,i =Rt −Rt,d.

where df and df ,i are vectors with one entry for each of 389 commodity
sectors, and Rt, Rt,d, and Rt,i are matrices with one row for each of 389 in-
dustry sectors and one column for each of 389 commodity sectors.

We calculate economic production, ρ, caused by final demand as in Eq. 2:

ρ=Rdf , [2]

where R is one of Rt, Rt,d, or Rt,i depending on whether total, domestic, or
international economic production is desired. For imports, df is replaced
with dfi. ρ is a vector with one entry for each industry sector.

BEA input–output data are disaggregated to the detailed level of 389
industries and 389 commodities for year 2007, and to the summary level of
71 industries and 73 commodities for years 1997–2015. To perform calcula-
tions for years other than 2007, we scale the detailed 2007 data as in Eq. 3:

vd,i,c,y =
vd,i,c,2007vs,i,c,y

vs,i,c,2007
, [3]

where vd,i,c,y is a value at the detailed level of aggregation for industry i and
commodity c for the year of interest, vd,i,c,2007 is the corresponding value at
the detailed level of aggregation for year 2007, and vs,i,c,y and vs,i,c,2007 are
values for the corresponding summary level of aggregation for the year of
interest and 2007, respectively.

Some negative values for final demand exist in the BEA input–output data
tables. These typically relate to divestments or reductions in amounts of stocks.
Because our objective is to use economic relationships to model air pollution
emissions and impacts, and divestments or stock reductions do not cause neg-
ative emissions in the same way that investments and increases in stocks can be
said to cause positive emissions, we set all negative final demand values to zero.

Demographic-Specific Personal Consumption Demand. BEA input–output data
report final demand from personal expenditures, but the data do not dis-
aggregate consumption by racial or ethnic groups. To calculate demographic-
specific consumption, we match categories in the US Bureau of Labor Statistics
Consumer Expenditure Survey (CES) (https://www.bls.gov/cex/) to the BEA in-
put–output sectors, then use the demographic information in the CES data to
allocate BEA personal expenditures among demographic groups. The CES data
report expenditures separately for the following: Hispanics or Latinos; Not
Hispanic or Latino: whites and all other races; and Not Hispanic or Latino:
blacks or African-Americans.

As of this writing, CES data are available for the years 2003–2015. EIEIO
does not account for geographic variation in consumption amounts or in the
proportions of goods and services consumed.

Augmented Personal Consumption. In addition to personal consumption
(causing 46,000 premature deaths from PM2.5), we also attribute BEA private
expenditure final demand categories to individual end users and allocate
the expenditures among demographic groups. We do this by directly adding
final demand for “Residential private fixed investment” (16,000 premature
deaths from PM2.5) to personal consumption, as individuals are the ultimate
end users of residential buildings. The remaining private expenditure cate-
gories include expenditures on nonresidential structures (9,400 deaths),
nonresidential equipment (9,400 deaths), and intellectual property (500
deaths), as well as changes in inventory (1,700 deaths). Because consumption
activities provide the revenue streams that organizations use to make capital
investments and to generate inventory, albeit with time lags that we do not
account for here, we consider these expenditures—and the resulting air
pollution—to be caused by personal consumption. Therefore, we attribute
these additional categories of demand to demographic groups proportionate
to each group’s overall fraction of combined personal consumption and resi-
dential investments. Although government expenditures are also ultimately
funded by individuals, the taxes that fund the government are compulsory, and
relationships between individual tax contributions and government spending
decisions are uncertain. Therefore, we do not attribute government expendi-
tures to individuals, but instead track and display them as their own category.

Emission Factors. We create spatially explicit emissions factors—in units of
mass per time of emissions of primary PM2.5 and secondary PM2.5 precursors
[oxides of nitrogen (NOx), oxides of sulfur (SOx), ammonia (NH3), and volatile
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Fig. 4. Effect of magnitude and composition of consumption on PM2.5 ex-
posure. Population-adjusted PM2.5 exposure (Left): actual population-adjusted
exposure (as seen in Fig. 2). Magnitude-normalized PM2.5 exposure (Middle):
hypothetical exposure in which the overall magnitude of per capita con-
sumption for each race–ethnicity is adjusted to match “All” without changing
the composition of goods and services consumed. Composition-normalized
PM2.5 exposure (Right): hypothetical exposure where the composition of
goods and services consumed by each race–ethnicity is adjusted to match All
without changing the overall magnitude of consumption.
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organic compounds (VOCs)] per dollar—for each of the 5,434 EPA source
classification codes (SCCs) in the year 2014 US National Emissions Inventory
(NEI), version 1 (4). Each emissions record in the NEI contains an SCC that
specifies the type of source creating the emissions. First, we match each SCC
to one or more of the 389 BEA industries. Some sources of emissions cannot
be directly matched to BEA industries because they do not result from
economic transactions. We match these sources to the BEA industry to which
it is most closely related. The largest source of these nontransactional
emissions is the personal use of light-duty vehicles, which we match to the
“automobile manufacturing” industry based on the assumption that the
individuals and entities that drive light-duty vehicles and create the resulting
emissions are the same as the individuals and entities that purchase auto-
mobiles. Other nontransactional sources of emissions include leisure activi-
ties such as barbecuing and operating recreational vehicles, which we
attribute to relevant residential or recreational industries. The cross-walk
between SCCs and BEA industries can be found in Tessum et al. (24). We
use this cross-walk to map the economic production vector, ρ, which has one
element for each BEA industry, to vector ρ̂, which has one element for each
SCC equal to the sum of economic production in the BEA industry or industries
that the SCC is matched to. ρ̂ double counts economic production in some
cases, but is used in a way that ensures emissions are not double counted.

Next, we process the NEI emissions (excluding emissions occurring in
Canada and Mexico, which are tracked separately) using the InMAP Air
Emissions Preprocessor program, also included in Tessum et al. (24). We assign
each emissions record to the BEA industry or industries it belongs to and
allocate the emissions to a spatial grid with cell edge lengths varying be-
tween 1 and 48 km, depending on population density and emission density.
[The grid employed by InMAP is described further by Tessum et al. (5).] We
allocate county-specific emissions to grid cells within counties using spatial
surrogates, as described by the US EPA (4).

Finally, we calculate spatially explicit emissions factors by dividing the
emissions from each SCC by the total domestic economic production in the
matched industry or industries (i.e., ρ̂) resulting from domestic and export
final demand. The result is a series of emissions factor matrices, Ep, where p is
one of the pollutants in (primary PM2.5, NOx, SOx, NH3, VOC). Each emissions
factor matrix has one row for each spatial grid cell, one column for each SCC,
and dimensions of [mass·time−1·$−1].

For analysis years other than 2014, we adjust the 2014 NEI emissions
according to state- and source-group-specific annual trends in emissions
published by the US EPA (https://www.epa.gov/air-emissions-inventories/
air-pollutant-emissions-trends-data). To quantify health impacts from non–
human-related emissions sources, we also include combined biogenic and
wildfire emissions from year 2005, as processed by Tessum et al. (26). Further
information is in SI Appendix. We calculate spatially explicit emissions of a
pollutant p ðepÞ induced by human activity (using economic final demand as
a surrogate for human activity) as shown in Eq. 4:

ep = Epρ̂, [4]

where ep is a vector with length equaling the number of spatial grid cells
and dimensions of [mass·time−1].

PM2.5 Concentrations. Primary PM2.5 and secondary PM2.5 precursors are emit-
ted into the atmosphere where they are transported by wind, transformed by
chemistry, and ultimately inhaled by humans or otherwise removed. We ac-
count for these phenomena using InMAP, version 1.2.1 (5); InMAP creates
spatially explicit estimates of ambient PM2.5 concentrations caused by the
emissions estimated by EIEIO. For computational expedience, we use InMAP to
create a set of source–receptor matrices, which describe linear relationships
between (i) emissions in each of many source locations and (ii) concentrations
in each of many receptor locations. We create the InMAP source–receptor
matrix (ISRM) by running separate InMAP simulations that estimate the
ground-level changes in PM2.5 concentrations of emissions of SOx, NOx, VOCs,
NH3, and primary PM2.5 in each of ∼50,000 InMAP grid cells. This is repeated
three times to consider emissions plume height ranges of 0–57, 240–380, and
760–1,000 m, for a total of ∼150,000 simulations. The result can be represented
as a rank-four tensor describing independent linear relationships between
emissions and PM2.5 concentrations for discrete combinations of pollutant
emitted, emissions source location, emissions plume height, and concentration
receptor location. By using linear interpolation to calculate impacts for sources with
plume heights that do not fall within themodeled height ranges, ISRM can quickly
calculate PM2.5 concentrations resulting from arbitrary combinations of emissions
sources and locations. ISRM model performance evaluation is in SI Appendix.

Ground-level concentrations of PM2.5 depend on the height and location
of emissions; therefore, instead of directly using the Ep matrices to calculate

concentration impacts, we create a separate series of matrices for the con-
centration factor, Cp, for each emitted pollutant, p, by using the ISRM to
calculate total concentrations from the NEI emissions records associated with
each SCC—while accounting for individual plume heights from each emis-
sions record—and dividing the result by the total transformed domestic
economic production, ρ̂. The resulting matrices, Cp, have one row for each
spatial grid cell, one column for each SCC, and units of micrograms per cubic
meter per dollar. Total PM2.5 concentration impacts ðcÞ of economic final demand
are calculated by summing impacts from each emitted pollutant as in Eq. 5:

c=
X
p

�
Cpρ̂

�
, [5]

where c is a vector with length equaling the number of spatial grid cells and
units of micrograms per cubic meter.

Health Impacts. Air pollution-related health impacts from economic final
demand are a function of population counts, underlying incidence rates, and
concentration–response relationships, in addition to the PM2.5 concentrations
themselves.
Population counts. Population counts are based on data from the US Census
Bureau American Community Survey (ACS) 5-Year Estimates (https://www.
census.gov/programs-surveys/acs/technical-documentation/table-and-
geography-changes/2015/5-year.html) for midpoint years 2007–2014, plus
the year 2000 decennial census, downloaded from the National Historical
Geographic Information System (27) at census block-group spatial resolu-
tion. We calculate health impacts for several race–ethnicity categories:

i) Total population (314 million people in our study domain, as of 2014).
ii) People of all races who are Hispanic or Latino; we refer to this group as

Hispanic (54 million people).
iii) People who are not Hispanic or Latino and are black or African Amer-

ican alone; we refer to this group as black (39 million people).
iv) All people who are not in the Hispanic or black groups; we refer to this

group as white/other; this group includes 196 million whites, 15 million
Asians or Pacific Islanders, 2 million American Indians, and 8 million
Others/Multiple Races.

Population counts for years 2001–2006 are estimated using spatially explicit
interpolation with 2000 and 2007 as the endpoints, years 1997–1999 use year
2000 population counts without modification, and year 2015 uses year 2014
population counts without modification. Data for years 2007–2014 are directly
available from ACS. We use the total population count to calculate total health
impacts, and we use the separate counts for each demographic group to cal-
culate inequity in PM2.5 exposure. The racial–ethnic groups used here were
chosen to align with the demographic groups in the Consumer Economics
Survey (https://www.bls.gov/cex/). We use population counts for people of all
ages, rather than restricting the analysis to a specific age range. One reason for this
is that publicly available US Census data do not include both race–ethnicity and
age information at the block-group spatial resolution. We allocate population
counts to spatial grid cells, using area weighting for census block groups that
overlap more than one grid cell. The resulting vectors, pg, where g is the set of
demographic groups above, have one row for each grid cell and units of [persons].
Underlying incidence rates. We use county-specific data for baseline all-cause
mortality rates from the US Centers for Disease Control and Prevention
(https://www.cdc.gov/nchs/data_access/cmf.htm) for years matching the
population years above. We use mortality rates for the full population,
rather than for a specific age range. Following Apte et al. (28), we calculate
the county-average underlying mortality incidence rate, Io, as in Eqs. 6 and 7:

Io,c =
Ic

HRc
, [6]

HRc =
PNc

i=1Pi ×HRðCiÞfi,cPN
i=1Pi

, [7]

where Ic is the reported mortality rate in a given county; HRc is the aver-
age mortality hazard ratio caused by PM2.5 in county c; i is one of Nc grid cells in
county c; Pi is population count in grid cell i; HRðCiÞ is the result of the con-
centration–response relationship described below for total PM2.5 concentration
Ci , calculated as described in PM2.5 Concentrations; and fi,c is the area fraction of
grid cell i that overlaps with county c. The term Io,c represents a hypothetical
mortality incidence rate in the absence of ambient PM2.5. For health impact
calculations, we assume that the underlying incidence rate for all racial–ethnic
groups is the same as the population average. We calculate a US population-
average Io,c of 763 deaths per 100,000 people per year in 2014.
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Concentration–response relationship. We represent the effect of changes in
PM2.5 concentration on mortality rates using the relationship described by
Nasari et al. (6) and Burnett et al. (7), as in Eq. 8:

HRðCÞ= exp
�

γ * lnðC +1Þ
1+ exp½−ðC − δÞ=λ�

�
, [8]

where HRðCÞ is the hazard ratio of mortality incidence at PM2.5 concentra-
tion C—in units of micrograms per cubic meter—compared with a hypo-
thetical underlying incidence rate, Io, in the absence of ambient PM2.5. γ, δ,
and λ are empirically determined constants. Nasari et al. use an ensemble
version of Eq. 8, where γ, δ, and λ take many combinations of values and the
prediction of each combination is weighted by its performance in predicting
health outcomes in the American Cancer Society cohort. To reduce model
complexity and computational expense, we use a deterministic version of
the relationship, where γ = 0.0478, δ= 6.94, and λ= 3.37 are determined us-
ing nonlinear regression to predict the expected value of the ensemble
prediction. The relationship used here and by Nasari et al. (6) differs from
the relationship presented by Burnett et al. (7) in that it is derived from the
US-based American Cancer Society cohort rather than from 41 global cohorts.

The term HRðCÞ is a nonlinear function; therefore, the impact of a change in
concentration depends on the initial concentration. It follows that if a number
of emissions sources are consecutively added or subtracted from an area, their
health impact per unit emission will depend on the order that they were added
or subtracted. We assume that the impact of each unit PM2.5 is equal to the
average per-unit impact of PM2.5 in a given location, as in Eq. 9:

HRi =
HR
�
Ct,i
	

Ct,i
, [9]

where HRi is the average per-unit concentration hazard ratio at location i,
and Ct,i is the total concentration at location i.

As a sensitivity analysis, we also use three other hazard ratio models based
on the work of Krewski et al. (29) and Lepeule et al. (30), which all take the
form shown in Eq. 10:

HRðCÞ= expðβ ×max½0,C −Co�Þ, [10]

where β is an empirically determined constant. We use two β values reported

by Krewski et al. (29): β= lnð1.06Þ=10 and β= lnð1.078Þ=10. We also use
β= lnð1.14Þ=10 as reported by Lepeule et al. (30). Co represents the lowest
observed concentration: 5 μg·m−3 for Krewski et al. (29) and 8 μg·m−3 for
Lepeule et al. (30); our method assumes that for concentrations below this
threshold, the risk of PM2.5-caused premature mortality is zero.
Health impact calculation.We calculate the health impacts of air pollution using
Eq. 11:

MðCiÞ=pi

Xn
c

Io,cfi,cHRi , [11]

where MðCiÞ is the number of mortalities caused by the concentration of
pollution ðCiÞ at location i, pi is the population count in grid cell i, Io,c,i is the
underlying incidence rate for one of n counties ðcÞ overlapping grid cell i,
and fi,c is the fraction of grid cell i that overlaps county c. We then calculate
the PM2.5 health impacts, d, of economic final demand by combining Eqs. 5
and 11 in Eq. 12:

d =M

 X
p

�
Cpρ̂

�!
, [12]

where d is a vector with length equaling the number of spatial grid cells and
units of [deaths].
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